Multi-band optical imaging
From fusion to change detection

Nicolas Dobigeon

Joint work with Q. Wei, V. Ferraris, J.-Y. Tourneret and M. Chabert

University of Toulouse, IRIT/INP-ENSEEIHT
Institut Universitaire de France (IUF)
Artificial and Natural Intelligence Toulouse Institute (ANITI)
http://dobigeon.perso.enseeiht.fr

ORASIS 2021, Lac de St-Ferréol
Multi-band optical imaging

Multi/hyper-spectral images

- same scene observed at different wavelengths
Multi-band optical imaging

Multi/hyper-spectral images

- same scene observed at different wavelengths

Hyperspectral Cube
Introduction

Multi-band optical imaging

Multi/hyper-spectral images

- same scene observed at different wavelengths,
- pixel represented by a vector of tens/hundreds of measurements.
Multi-band optical imaging

Multi/hyper-spectral images

- same scene observed at different wavelengths,
- pixel represented by a vector of tens/hundreds of measurements.

Hyperspectral Cube
Introduction

Multi-band optical imaging

![Image of plants]
Introduction

Multi-band optical imaging

[Image of plants under 473 nm light]
Introduction

Multi-band optical imaging

547 nm
Introduction

Multi-band optical imaging

![Image of plants with the text "621 nm" indicating the wavelength]
Multi-band optical imaging
Introduction

Multi-band optical imaging

770 nm
Multi-band optical imaging
Spatial vs. spectral resolution trade-off

Panchromatic images (PAN)
- no spectral resolution (only 1 band),
- very high spatial resolution (~ 10cm).

Multispectral images (MS)
- low spectral resolution (~ 10 bands),
- high spatial resolution (~ 1m).

Hyperspectral images (HS)
- high spectral resolution (~ 100 bands),
- low spatial resolution (~ 10m).
Multi-band optical imaging
Spatial vs. spectral resolution trade-off

Spot HS (20m) Quickbird MS (4m) Ikonos PAN (1m)
Introduction

Multi-band optical image fusion
 Problem statement
 Fast fusion solving a Sylvester equation
 Experiments

Multi-band optical image change detection
 Fusion approach
 Robust Fusion approach

Conclusions
Introduction

Multi-band optical image fusion
 Problem statement
 Fast fusion solving a Sylvester equation
 From maximum likelihood estimator...
 ... to maximum a posteriori estimators
 Experiments

Multi-band optical image change detection
 Fusion approach
 Robust Fusion approach

Conclusions
Multi-band optical image fusion

Multiple image fusion

Pansharpening: PAN+MS fusion
- incorporate the spatial details of the PAN image into the MS image
- huge literature
- main approaches rely on band substitution

Hyperspectral pansharpening: PAN+HS fusion
- incorporate the spatial details of the PAN image into the HS image
- more difficult due to the size of the HS image
- specific methods should be developed

Multi-band image fusion: MS+HS fusion
- incorporate the spatial details of the MS image into the HS image
- more difficult since the spatial details contained in a multi-band image
- specific methods should be developed
Multiple image fusion

Pansharpening: PAN+MS fusion
- incorporate the spatial details of the PAN image into the MS image
- huge literature
- main approaches rely on band substitution

Hyperspectral pansharpening: PAN+HS fusion
- incorporate the spatial details of the PAN image into the HS image
- more difficult due to the size of the HS image
- specific methods should be developed

Multi-band image fusion: MS+HS fusion
- incorporate the spatial details of the MS image into the HS image
- more difficult since the spatial details contained in a multi-band image
- specific methods should be developed
Multiple image fusion

Pansharpening: PAN+MS fusion
- incorporate the spatial details of the PAN image into the MS image
- huge literature
- main approaches rely on band substitution

Hyperspectral pansharpening: PAN+HS fusion
- incorporate the spatial details of the PAN image into the HS image
- more difficult due to the size of the HS image
- specific methods should be developed

Multi-band image fusion: MS+HS fusion
- incorporate the spatial details of the MS image into the HS image
- more difficult since the spatial details contained in a multi-band image
- specific methods should be developed
Multiple image fusion

Hyperspectral pansharpening: PAN+HS fusion
- incorporate the spatial details of the PAN image into the HS image
- more difficult due to the size of the HS image
- specific methods should be developed

Multi-band image fusion: MS+HS fusion
- incorporate the spatial details of the MS image into the HS image
- more difficult since the spatial details contained in a multi-band image
- specific methods should be developed
Problem statement

(a) Hyperspectral Image (size: $99 \times 46 \times 224$, res.: $20m \times 20m$) (b) Multispectral Image (size: $396 \times 184 \times 4$ res.: $5m \times 5m$) (c) Target (size: $396 \times 184 \times 224$ res.: $5m \times 5m$)

<table>
<thead>
<tr>
<th>Name</th>
<th>AVIRIS (HS)</th>
<th>SPOT-5 (MS)</th>
<th>Pleiades (MS)</th>
<th>WorldView-3 (MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Res. (m)</td>
<td>20</td>
<td>10</td>
<td>2</td>
<td>1.24</td>
</tr>
<tr>
<td># bands</td>
<td>224</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Table: Some existing remote sensors characteristics
Forward model for multi-band optical images

\[T_D[\cdot] \quad T_N[\cdot] \]

\[\begin{array}{c}
 X \quad \text{Spectral Degradation} \quad L \quad \text{Spatial Degradation} \quad R \quad \text{Y}
\end{array} \]

\[Y = LXR + N \]

where

- **Y** observed multiband image of low spatial and/or spectral resolutions (row ↔ band, column ↔ pixel)
- **X** (unknown) latent image of high spatial and/or spectral resolutions (row ↔ band, column ↔ pixel)
- **L** spectral degradation matrix
- **R** spatial degradation matrix, e.g., decomposed as \(R = BS \) with
 - **B** spatial blur
 - **S** spatial subsampling
Complementary acquisitions: forward models

- \(\mathbf{X} \in \mathbb{R}^{m \times n} \): full resolution unknown image
Complementary acquisitions: forward models

- $X \in \mathbb{R}^{m \times n}$: full resolution unknown image
- $B \in \mathbb{R}^{n \times n}$: cyclic convolution operator acting on the bands
Complementary acquisitions: forward models

- \(\mathbf{X} \in \mathbb{R}^{m \times n} \): full resolution unknown image
- \(\mathbf{B} \in \mathbb{R}^{n \times n} \): cyclic convolution operator acting on the bands
- \(\mathbf{S} \in \mathbb{R}^{n \times m} \): downsampling operator
Complementary acquisitions: forward models

\[Y_H \approx XBS \]

- \(X \in \mathbb{R}^{m\lambda \times n} \): full resolution unknown image
- \(Y_H \in \mathbb{R}^{m\lambda \times m} \): observed HS image
- \(B \in \mathbb{R}^{n \times n} \): cyclic convolution operator acting on the bands
- \(S \in \mathbb{R}^{n \times m} \): downsampling operator
Multi-band optical image fusion

Complementary acquisitions: forward models

\[Y_H \approx XBS \]

- \(X \in \mathbb{R}^{m \times n} \): full resolution unknown image
- \(Y_H \in \mathbb{R}^{m \times m} \): observed HS image
- \(B \in \mathbb{R}^{n \times n} \): cyclic convolution operator acting on the bands
- \(S \in \mathbb{R}^{n \times m} \): downsampling operator

Spatial blur \(B \)
Complementary acquisitions: forward models

\[Y_H \approx X_{BS} \]

- \(X \in \mathbb{R}^{m \times n} \): full resolution unknown image
- \(Y_H \in \mathbb{R}^{m \times m} \): observed HS image
- \(B \in \mathbb{R}^{n \times n} \): cyclic convolution operator acting on the bands
- \(S \in \mathbb{R}^{n \times m} \): downsampling operator
- \(R \in \mathbb{R}^{n \times m} \): spectral response of the MS sensor

![Spatial blur B and spectral response R](image-url)
Complementary acquisitions: forward models

\[Y_H \approx XBS, \quad Y_M \approx RX \]

- \(X \in \mathbb{R}^{m \times n} \): full resolution unknown image
- \(Y_H \in \mathbb{R}^{m \times m} \): observed HS image
- \(Y_M \in \mathbb{R}^{n \times n} \): observed MS image
- \(B \in \mathbb{R}^{n \times n} \): cyclic convolution operator acting on the bands
- \(S \in \mathbb{R}^{n \times m} \): downsampling operator
- \(R \in \mathbb{R}^{n \times m} \): spectral response of the MS sensor
Complementary acquisitions: forward models

\[Y_H = XBS + N_H, \quad Y_M = RX + N_M \]

- \(X \in \mathbb{R}^{m_\lambda \times n} \): full resolution unknown image
- \(Y_H \in \mathbb{R}^{m_\lambda \times m} \): observed HS image
- \(Y_M \in \mathbb{R}^{n_\lambda \times n} \): observed MS image
- \(B \in \mathbb{R}^{n \times n} \): cyclic convolution operator acting on the bands
- \(S \in \mathbb{R}^{n \times m} \): downsampling operator
- \(R \in \mathbb{R}^{n_\lambda \times m_\lambda} \): spectral response of the MS sensor
- \(N_H \in \mathbb{R}^{m_\lambda \times m} \) and \(N_M \in \mathbb{R}^{n_\lambda \times n} \): HS and MS noises
Noise statistics

Gaussian assumption

\[\mathbf{N}_H | \mathbf{\Lambda}_H \sim \mathcal{MN}_{m \lambda, m}(\mathbf{0}_{m \lambda}, m, \mathbf{\Lambda}_H, \mathbf{I}_m) \]
\[\mathbf{N}_M | \mathbf{\Lambda}_M \sim \mathcal{MN}_{n \lambda, n}(\mathbf{0}_{n \lambda}, n, \mathbf{\Lambda}_M, \mathbf{I}_n) \]

where

- \(\mathbf{\Lambda}_H = \text{diag} \left\{ s_{H,1}^2, \ldots, s_{H,m \lambda}^2 \right\} \) (hyperspectral noise variances)
- \(\mathbf{\Lambda}_M = \text{diag} \left\{ s_{M,1}^2, \ldots, s_{M,n \lambda}^2 \right\} \) (multispectral noise variances)

and the pdf of a matrix normal distribution is defined by

\[
p(\mathbf{Z} | \mathbf{\tilde{Z}}, \mathbf{\Sigma}_r, \mathbf{\Sigma}_c) \propto \exp \left(-\frac{1}{2} \text{tr} \left[\mathbf{\Sigma}_c^{-1} (\mathbf{Z} - \mathbf{\tilde{Z}})^T \mathbf{\Sigma}_r^{-1} (\mathbf{Z} - \mathbf{\tilde{Z}}) \right] \right)
\]

\(\rightarrow \) band-dependent noise
\(\rightarrow \) pixel-independent noise
Likelihood of the observations

Given the forward model (characterized by both left- and right-operators)

\[
Y_H = XBS + N_H \\
Y_M = RX + N_M
\]

the two likelihood functions express as

\[
Y_H|X \sim \mathcal{MN}_{m, m}(XBS, \Lambda_H, I_m) \\
Y_M|X \sim \mathcal{MN}_{n, n}(RX, \Lambda_M, I_n)
\]

Joint likelihood
HS and MS images acquired by distinct sensors
→ independent HS and MS noises
→ independent observed images, cond. on \(X\)

\[
f(Y_H, Y_M|X) = f(Y_H|X) f(Y_M|X)
\]
Likelihood of the observations

Given the forward model (characterized by both left- and right-operators)

\[Y_H = XBS + N_H \]
\[Y_M = RX + N_M \]

the two likelihood functions express as

\[Y_H|X \sim \mathcal{MN}_{m, m}(XBS, \Lambda_H, I_m) \]
\[Y_M|X \sim \mathcal{MN}_{n, n}(RX, \Lambda_M, I_n) \]

Joint likelihood

HS and MS images acquired by distinct sensors

→ independent HS and MS noises
→ independent observed images, cond. on \(X \)

\[f(Y_H, Y_M|X) = f(Y_H|X) f(Y_M|X) \]
Multi-band image fusion as an estimation problem

Maximum likelihood estimation
Maximizing the two data-fitting terms writes

\[
\hat{X} \in \arg\min_X - \log f(Y_H|X) - \log f(Y_M|X)
\]

formulated as a weighted least-square regression

\[
\hat{X} \in \arg\min_X \|Y_M - RX\|_{\Lambda_M^{-1}}^2 + \|Y_H - XBS\|_{\Lambda_H^{-1}}^2
\]

Main issues
- (generally) large scale problem
- (generally) ill-posed (at least ill-conditioned) problem

Regularization required...
- (always) in the spectral domain
- (optional) in the spatial domain
Multi-band image fusion as an estimation problem

Maximum likelihood estimation
Maximizing the two data-fitting terms writes

\[
\hat{X} \in \arg\min_X \log f(Y_H | X) - \log f(Y_M | X)
\]

formulated as a weighted least-square regression

\[
\hat{X} \in \arg\min_X \|Y_M - RX\|_{\Lambda_M}^2 + \|Y_H - XBS\|_{\Lambda_H}^2
\]

Main issues
- (generally) large scale problem
- (generally) ill-posed (at least ill-conditioned) problem

Regularization required...
- (always) in the spectral domain
- (optional) in the spatial domain
Hyperspectral pixels live in a (much) lower-dimensional subspace...

Unknown image X enforced to be decomposed as

$$X = HU$$

i.e., its pixels live in a lower-dimensional subspace ($\mathbb{R}^{\tilde{m}_\lambda}$ with $\tilde{m}_\lambda \ll m_\lambda$) spanned by the columns of $H \in \mathbb{R}^{m_\lambda \times \tilde{m}_\lambda}$ (estimated or known a priori).
Hyperspectral pixels live in a (much) lower-dimensional subspace...

Unknown image X enforced to be decomposed as

$$X = HU$$

i.e., its pixels live in a lower-dimensional subspace $(\mathbb{R}^{\tilde{m}_\lambda}$ with $\tilde{m}_\lambda \ll m_\lambda$) spanned by the columns of $H \in \mathbb{R}^{m_\lambda \times \tilde{m}_\lambda}$ (estimated or known a priori).
Given the spectral regularization, the optimization problem writes

\[
\hat{U} \in \arg\min_U \mathcal{J}(U)
\]

with

\[
\mathcal{J}(U) = \| \Lambda_H^{-1}(Y_H - HUBS) \|_F^2 + \| \Lambda_M^{-1}(Y_M - RHU) \|_F^2
\]

\[
\nabla \mathcal{J}(U) = 0 \iff \text{finding } U \text{ such that } C_1 U + UC_2 = C_3
\]

with

\[
C_1 = \left[H^H \Lambda_H^{-1} H\right]^{-1} \left[(RH)^H \Lambda_M^{-1} (RH)\right]
\]

\[
C_2 = \left[BS (BS)^H\right]
\]

\[
C_3 = \text{term depending on } Y_H \text{ and } Y_M \text{ (ind. on } U)\]
Solving a Sylvester matrix equation

\[C_1 U + U C_2 = C_3 \]

Main issue
\[C_2 = B S (B S)^H \] is not diagonalizable!

In the literature...
- **general resolution**: Bartels-Stewart algorithm (1972), with complexity of \(O(n^3) \) → impossible in practice
- **in the context of fusion**: iterative algos, e.g., gradient descent, ADMM... → time consuming

Our contribution
We showed that an explicit solution can be written and easily computed! (see [WDT15a, WDT+16])

Remark: result can be applied to (because generalizes) superresolution [ZWB+16]...
Assumption 1

The blurring matrix B is a **block circulant matrix with circulant blocks (BCCB)**.

![Block Circulant Matrix](image)

Assumption 2

The decimation matrix S corresponds to **downsampling** the original signal and its conjugate transpose S^H **interpolates** the decimated signal **with zeros**.

e.g.

$$S = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{bmatrix}$$
Fast fUision based on a Sylvester Equation (FUSE)

Input: $Y_M, Y_H, \Lambda_M, \Lambda_H, R, B, S, H$

$D \leftarrow F^HBF$ and $D \leftarrow D^*D$
/* Circulant matrix: $B = FDF^H */$

$C_1 \leftarrow \left(H^H \Lambda_H^{-1} H \right)^{-1} \left((RH)^H \Lambda_L^{-1} RH \right)$
/* Compute $C_1 */$

$(Q, \Lambda_C) \leftarrow \text{EigDec}(C_1)$
/* Eigen-dec of C_1: $C_1 = Q\Lambda_CQ^{-1} */$

$\tilde{C}_3 \leftarrow Q^{-1} \left(H^H \Lambda_H^{-1} H \right)^{-1} \left(H^H \Lambda_H^{-1} Y_H (BS)^H + (RH)^H \Lambda_L^{-1} Y_M \right)BFP^{-1}$

for $l = 1$ to m_λ do

\[u_{l,1} = (\tilde{C}_3)_{l,1} \left(\frac{1}{d} \sum_{i=1}^{d} D_i + \lambda_C^l I_n \right)^{-1} \]

for $j = 2$ to d do

\[u_{l,j} = \frac{1}{\lambda_C^l} \left((\tilde{C}_3)_{l,j} - \frac{1}{d} u_{l,1} D_j \right) \]

end

end

$\hat{U} = QUPD^{-1}F^H$

Output: $\hat{X} = H\hat{U}$
Incorporating (spatial) regularization

$$\hat{U} \in \arg\min_U \left\| \Lambda_H^{-1} (Y_H - HUBS) \right\|_F^2 + \left\| \Lambda_M^{-1} (Y_M - RHU) \right\|_F^2 + \mu \phi(U)$$

where

- $\phi(U) = \left\| \Gamma (U - \tilde{U}) \right\|_F^2$: (generalized) Thikonov regularizations
 + $\Gamma = I$ and \tilde{U} = “crude estimate”: supervised naive Gaussian prior [WDT15b]
 → closed-form solution
 + joint estimation of $\Lambda = \{ \Lambda_H, \Lambda_M \}$ and μ: unsupervised naive Gaussian prior [WDT15c]
 → closed-form solution embedded in BCD algorithm
Incorporating (spatial) regularization

\[
\hat{U} \in \arg\min_U \left\| \Lambda_H^{-1} (Y_H - HUBS) \right\|_F^2 + \left\| \Lambda_M^{-1} (Y_M - RHU) \right\|_F^2 + \mu \phi(U)
\]

where

- \(\phi(U) = \left\| \Gamma (U - \bar{U}) \right\|_F^2 \): (generalized) Thikonov regularizations
 - \(\Gamma = I \) and \(\bar{U} \) = “crude estimate”: supervised naive Gaussian prior [WDT15b]
 \(\rightarrow \) closed-form solution
 - joint estimation of \(\Lambda = \{ \Lambda_H, \Lambda_M \} \) and \(\mu \): unsupervised naive Gaussian prior [WDT15c]
 \(\rightarrow \) closed-form solution embedded in BCD algorithm
Gaussian prior

Unsupervised naive Gaussian prior: closed-form solution embedded in BCD (FUSE-BCD)

\[\text{Input: } Y_{H}, Y_{M}, \tilde{m}_{\lambda}, B, S, R, H \]
\[\text{for } t = 1 \text{ to } T \text{ do} \]
\[\quad \text{// Optimize w.r.t. to } U \]
\[\quad U_t = \arg \min_U L(U, \Lambda_{t-1}, \mu_{t-1}) \]
\[\quad \text{// Sylvester equation } \]
\[\quad \text{// Optimize w.r.t. } \Lambda \]
\[\quad \Lambda_t = \arg \min_{\Lambda} L(U_t, \Lambda, \mu_{t-1}) \]
\[\quad \text{// Optimize w.r.t. } \mu \]
\[\quad \mu_t = \arg \min_{\mu} L(U_t, \Lambda_t, \mu) \]
\[\text{end} \]
\[\hat{U} \leftarrow U_T \]
\[\text{Output: } \hat{X} = H\hat{U} \]
Incorporating (spatial) regularization

\[\hat{U} \in \text{argmin}_U \left\| \Lambda_H^{-1} (Y_H - \text{HUBS}) \right\|_F^2 + \left\| \Lambda_M^{-1} (Y_M - \text{RHU}) \right\|_F^2 + \mu \phi(U) \]

where

- \(\phi(U) = \| \Gamma (U - \tilde{U}) \|_F^2 \): (generalized) Thikonov regularizations
 - \(\Gamma = I \) and \(\tilde{U} \) = “crude estimate”: supervised naive Gaussian prior [WDT15b]
 → closed-form solution
 - joint estimation of \(\Lambda = \{ \Lambda_H, \Lambda_M \} \) and \(\mu \): unsupervised naive Gaussian prior [WDT15c]
 → closed-form solution embedded in BCD algorithm

- \(\phi(U) = \| U - DA \|_F^2 \): sparse representation based on dictionary learning [WBDT15]
 - \(D \): dictionary learnt beforehand
 - \(A \): code estimated (with sparse support learnt beforehand)
 → closed-form solution embedded in BCD algorithm
Incorporating (spatial) regularization

\[\hat{U} \in \arg\min_U \left\| \Lambda_H^{-1} (Y_H - \text{HUBS}) \right\|_F^2 + \left\| \Lambda_M^{-1} (Y_M - \text{RUH}) \right\|_F^2 + \mu \phi(U) \]

where

- \(\phi(U) = \| \Gamma (U - \tilde{U}) \|_F^2 \): (generalized) Thikonov regularizations
 - \(\Gamma = I \) and \(\tilde{U} = \)“crude estimate”: supervised naive Gaussian prior [WDT15b]
 \(\rightarrow \) closed-form solution
 - joint estimation of \(\Lambda = \{ \Lambda_H, \Lambda_M \} \) and \(\mu \): unsupervised naive Gaussian prior [WDT15c]
 \(\rightarrow \) closed-form solution embedded in BCD algorithm

- \(\phi(U) = \| U - DA \|_F^2 \): sparse representation based on dictionary learning [WBDT15]
 - \(D \): dictionary learnt beforehand
 - \(A \): code estimated (with sparse support learnt beforehand)
 \(\rightarrow \) closed-form solution embedded in BCD algorithm
Sparse representation

Sparse prior: closed-form solution embedded in BCD (FUSE-BCD)

Input: $Y_H, Y_M, \tilde{m}_\lambda, B, S, R, H, \text{SNR}_H, \text{SNR}_M, n_{\text{max}}$

// Rough estimation of U

Approximate \tilde{U} using Y_M and Y_H;

// Online dictionary learning

$\hat{D} \leftarrow \text{ODL}(\tilde{U})$;

// Sparse coding

$\hat{A} \leftarrow \text{OMP}(\hat{D}, \tilde{U}, n_{\text{max}})$;

// Computing support

$\hat{\Omega} \leftarrow \hat{A} \neq 0$;

// Start alternate optimization

for $t = 1$ to T do

// Optimize w.r.t. to U

$U_t = \arg\min_U L(U, A_{t-1})$; /* Sylvester equation */

// Optimize w.r.t. to A

$A_t = \arg\min_U L(U_t, A)$; /* solved with LS */

end

Output: $\hat{X} = H\hat{U}$
Incorporating (spatial) regularization

\[\hat{U} \in \text{argmin}_U \left\| \Lambda_H^{-1} (Y_H \ominus HUBS) \right\|_F^2 + \left\| \Lambda_M^{-1} (Y_M \ominus RHU) \right\|_F^2 + \mu \phi(U) \]

where

- \(\phi(U) = \| \Gamma (U - \hat{U}) \|_F^2 \): (generalized) Thikonov regularizations
 - \(\Gamma = I \) and \(\hat{U} \) = “crude estimate”: supervised naive Gaussian prior [WDT15b]
 - \(\rightarrow \) closed-form solution
 - joint estimation of \(\Lambda = \{ \Lambda_H, \Lambda_M \} \) and \(\mu \): unsupervised naive Gaussian prior [WDT15c]
 - \(\rightarrow \) closed-form solution embedded in BCD algorithm

- \(\phi(U) = \| U - DA \|_F^2 \): sparse representation based on dictionary learning [WBDT15]
 - \(D \): dictionary learnt beforehand
 - \(A \): code estimated (with sparse support learnt beforehand)
 - \(\rightarrow \) closed-form solution embedded in BCD algorithm

- \(\phi(U) = \sum_{j=1}^{m\lambda} \text{TV} \left[U_{j,:} \right] \): band-wise total variation [SoBAC15]
 - \(\rightarrow \) closed-form solution embedded in ADMM algorithm
Multi-band optical image fusion

Fast fusion solving a Sylvester equation

From ML to MAP estimators

Incorporating (spatial) regularization

\[
\hat{U} \in \arg\min_U \left\| \Lambda_H^{-1} (Y_H - \text{HUBS}) \right\|_F^2 + \left\| \Lambda_M^{-1} (Y_M - \text{RHU}) \right\|_F^2 + \mu \phi(U)
\]

where

- \(\phi(U) = \| \Gamma(U - \tilde{U}) \|_F^2 \): (generalized) Thikonov regularizations
 - \(\Gamma = I \) and \(\tilde{U} \) = “crude estimate”: supervised naive Gaussian prior [WDT15b]
 \(\rightarrow \) closed-form solution
 - joint estimation of \(\Lambda = \{ \Lambda_H, \Lambda_M \} \) and \(\mu \): unsupervised naive Gaussian prior [WDT15c]
 \(\rightarrow \) closed-form solution embedded in BCD algorithm

- \(\phi(U) = \| U - DA \|_F^2 \): sparse representation based on dictionary learning [WBDT15]
 - \(D \): dictionary learnt beforehand
 - \(A \): code estimated (with sparse support learnt beforehand)
 \(\rightarrow \) closed-form solution embedded in BCD algorithm

- \(\phi(U) = \sum_{j=1}^{m} \lambda \text{TV} [U_{j,:}] \): band-wise total variation [SoBAC15]
 \(\rightarrow \) closed-form solution embedded in ADMM algorithm
Non-Gaussian prior, such as TV

$$\arg\min_u \left\{ \frac{1}{2} \left\| \Lambda_H^{-\frac{1}{2}} (Y_H - \text{HUBS}) \right\|_F^2 + \frac{1}{2} \left\| \Lambda_M^{-\frac{1}{2}} (Y_M - \text{RHU}) \right\|_F^2 + \lambda \text{TV} (U) \right\}.$$

HS data term
MS data term
regularizer

can be equivalently solved as:

$$\arg\min_{u,v} \left\{ \frac{1}{2} \left\| \Lambda_H^{-\frac{1}{2}} (Y_H - \text{HUBS}) \right\|_F^2 + \frac{1}{2} \left\| \Lambda_M^{-\frac{1}{2}} (Y_M - \text{RHU}) \right\|_F^2 + \lambda \text{TV} (V) \text{ s.t. } U = V \right\}.$$

- ADMM algorithm: alternate minimization (FUSE-ADMM)
 - closed-form solution of the Sylvester equation
 - proximal mapping
Illustrative results
PAN + HS fusion / Gaussian prior

(left to right) HS image, PAN image, ground truth, ADMM, proposed method.
Performance and computational times
HS + MS fusion / various regularizations

Table: RSNR (in dB), UIQI, SAM (in degree), ERGAS, DD (in 10^{-3}) and time (in second).

<table>
<thead>
<tr>
<th>Regularization</th>
<th>Methods</th>
<th>RSNR</th>
<th>UIQI</th>
<th>SAM</th>
<th>ERGAS</th>
<th>DD</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>supervised</td>
<td>ADMM</td>
<td>29.321</td>
<td>0.9906</td>
<td>1.555</td>
<td>0.888</td>
<td>7.115</td>
<td>126.83</td>
</tr>
<tr>
<td>naive Gaussian</td>
<td>FUSE</td>
<td>29.372</td>
<td>0.9908</td>
<td>1.551</td>
<td>0.879</td>
<td>7.092</td>
<td>0.38</td>
</tr>
<tr>
<td>unsupervised</td>
<td>ADMM-BCD</td>
<td>29.084</td>
<td>0.9902</td>
<td>1.615</td>
<td>0.913</td>
<td>7.341</td>
<td>99.55</td>
</tr>
<tr>
<td>naive Gaussian</td>
<td>FUSE-BCD</td>
<td>29.077</td>
<td>0.9902</td>
<td>1.623</td>
<td>0.913</td>
<td>7.368</td>
<td>1.09</td>
</tr>
<tr>
<td>sparse representation</td>
<td>ADMM-BCD</td>
<td>29.582</td>
<td>0.9911</td>
<td>1.423</td>
<td>0.872</td>
<td>6.678</td>
<td>162.88</td>
</tr>
<tr>
<td></td>
<td>FUSE-BCD</td>
<td>29.688</td>
<td>0.9913</td>
<td>1.431</td>
<td>0.856</td>
<td>6.672</td>
<td>73.66</td>
</tr>
<tr>
<td>TV</td>
<td>ADMM</td>
<td>29.473</td>
<td>0.9912</td>
<td>1.503</td>
<td>0.861</td>
<td>6.922</td>
<td>134.21</td>
</tr>
<tr>
<td></td>
<td>FUSE-ADMM</td>
<td>29.631</td>
<td>0.9915</td>
<td>1.477</td>
<td>0.845</td>
<td>6.788</td>
<td>90.99</td>
</tr>
</tbody>
</table>

- The computational time is decreased significantly!
Comparison with state-of-the-art methods
PAN + HS fusion

Table: Characteristics of the three datasets [LBDB+15]

<table>
<thead>
<tr>
<th>dataset</th>
<th>dimensions</th>
<th>spatial res</th>
<th>N</th>
<th>instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moffett</td>
<td>PAN 185 × 395</td>
<td>20m</td>
<td>224</td>
<td>AVIRIS</td>
</tr>
<tr>
<td></td>
<td>HS 37 × 79</td>
<td>100m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camargue</td>
<td>PAN 500 × 500</td>
<td>4m</td>
<td>125</td>
<td>HyMap</td>
</tr>
<tr>
<td></td>
<td>HS 100 × 100</td>
<td>20m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garons</td>
<td>PAN 400 × 400</td>
<td>4m</td>
<td>125</td>
<td>HyMap</td>
</tr>
<tr>
<td></td>
<td>HS 80 × 80</td>
<td>20m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison with state-of-the-art methods

PAN + HS fusion

<table>
<thead>
<tr>
<th>method</th>
<th>CC</th>
<th>SAM</th>
<th>RMSE</th>
<th>ERGAS</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFIM</td>
<td>0.92955</td>
<td>9.5271</td>
<td>365.2577</td>
<td>6.5429</td>
<td>1.26</td>
</tr>
<tr>
<td>MTF-GLP</td>
<td>0.93919</td>
<td>9.4599</td>
<td>352.1290</td>
<td>6.0491</td>
<td>1.86</td>
</tr>
<tr>
<td>MTF-GLP-HPM</td>
<td>0.93817</td>
<td>9.3567</td>
<td>354.8167</td>
<td>6.1992</td>
<td>1.71</td>
</tr>
<tr>
<td>GS</td>
<td>0.90521</td>
<td>14.1636</td>
<td>443.4351</td>
<td>7.5952</td>
<td>4.77</td>
</tr>
<tr>
<td>GSA</td>
<td>0.93857</td>
<td>11.2758</td>
<td>363.7090</td>
<td>6.2359</td>
<td>5.52</td>
</tr>
<tr>
<td>PCA</td>
<td>0.89580</td>
<td>14.6132</td>
<td>463.2204</td>
<td>7.9283</td>
<td>3.46</td>
</tr>
<tr>
<td>GFPCA</td>
<td>0.91614</td>
<td>11.3363</td>
<td>404.2979</td>
<td>7.0619</td>
<td>2.58</td>
</tr>
<tr>
<td>CNMF</td>
<td>0.95496</td>
<td>9.4177</td>
<td>314.4632</td>
<td>5.4200</td>
<td>10.98</td>
</tr>
<tr>
<td>Supervised Gaussian</td>
<td>0.97785</td>
<td>7.1308</td>
<td>220.0310</td>
<td>3.7807</td>
<td>1.31</td>
</tr>
<tr>
<td>Sparse represent.</td>
<td>0.98168</td>
<td>6.6392</td>
<td>200.3365</td>
<td>3.4281</td>
<td>133.61</td>
</tr>
<tr>
<td>HySure</td>
<td>0.97059</td>
<td>7.6351</td>
<td>254.2005</td>
<td>4.3582</td>
<td>140.05</td>
</tr>
</tbody>
</table>
Comparison with state-of-the-art methods
PAN + HS fusion

Table: Quality measures for the Camargue dataset

<table>
<thead>
<tr>
<th>method</th>
<th>CC</th>
<th>SAM</th>
<th>RMSE</th>
<th>ERGAS</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFIM</td>
<td>0.91886</td>
<td>4.2895</td>
<td>637.1451</td>
<td>3.4159</td>
<td>3.47</td>
</tr>
<tr>
<td>MTF-GLP</td>
<td>0.92397</td>
<td>4.3378</td>
<td>622.4711</td>
<td>3.2666</td>
<td>4.26</td>
</tr>
<tr>
<td>MTF-GLP-HPM</td>
<td>0.92599</td>
<td>4.2821</td>
<td>611.9161</td>
<td>3.2497</td>
<td>4.25</td>
</tr>
<tr>
<td>GS</td>
<td>0.91262</td>
<td>4.4982</td>
<td>665.0173</td>
<td>3.5490</td>
<td>8.29</td>
</tr>
<tr>
<td>GSA</td>
<td>0.92826</td>
<td>4.1950</td>
<td>587.1322</td>
<td>3.1940</td>
<td>8.73</td>
</tr>
<tr>
<td>PCA</td>
<td>0.90350</td>
<td>5.1637</td>
<td>710.3275</td>
<td>3.8680</td>
<td>8.92</td>
</tr>
<tr>
<td>GFPCA</td>
<td>0.89042</td>
<td>4.8472</td>
<td>745.6006</td>
<td>4.0001</td>
<td>8.51</td>
</tr>
<tr>
<td>CNMF</td>
<td>0.93000</td>
<td>4.4187</td>
<td>591.3190</td>
<td>3.1762</td>
<td>47.54</td>
</tr>
<tr>
<td>Supervised Gaussian</td>
<td>0.95195</td>
<td>3.6428</td>
<td>489.5634</td>
<td>2.6286</td>
<td>7.35</td>
</tr>
<tr>
<td>Sparse represent.</td>
<td>0.95882</td>
<td>3.3345</td>
<td>448.1721</td>
<td>2.4712</td>
<td>485.13</td>
</tr>
<tr>
<td>HySure</td>
<td>0.94650</td>
<td>3.8767</td>
<td>511.8525</td>
<td>2.8181</td>
<td>296.27</td>
</tr>
</tbody>
</table>
Comparison with state-of-the-art methods

PAN + HS fusion

Table: Quality measures for the Garons dataset

<table>
<thead>
<tr>
<th>method</th>
<th>CC</th>
<th>SAM</th>
<th>RMSE</th>
<th>ERGAS</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFIM</td>
<td>0.77052</td>
<td>6.7356</td>
<td>1036.4695</td>
<td>5.1702</td>
<td>2.74</td>
</tr>
<tr>
<td>MTF-GLP</td>
<td>0.80124</td>
<td>6.6155</td>
<td>956.3047</td>
<td>4.8245</td>
<td>4.00</td>
</tr>
<tr>
<td>MTF-GLP-HPM</td>
<td>0.79989</td>
<td>6.6905</td>
<td>962.1076</td>
<td>4.8280</td>
<td>2.98</td>
</tr>
<tr>
<td>GS</td>
<td>0.80347</td>
<td>6.6627</td>
<td>1037.6446</td>
<td>5.1373</td>
<td>5.56</td>
</tr>
<tr>
<td>GSA</td>
<td>0.80717</td>
<td>6.7719</td>
<td>928.6229</td>
<td>4.7076</td>
<td>5.99</td>
</tr>
<tr>
<td>PCA</td>
<td>0.81452</td>
<td>6.6343</td>
<td>1021.8547</td>
<td>5.0166</td>
<td>6.09</td>
</tr>
<tr>
<td>GFPCA</td>
<td>0.63390</td>
<td>7.4415</td>
<td>1312.0373</td>
<td>6.3416</td>
<td>4.36</td>
</tr>
<tr>
<td>CNMF</td>
<td>0.82993</td>
<td>6.9522</td>
<td>893.9194</td>
<td>4.4927</td>
<td>23.98</td>
</tr>
<tr>
<td>Supervised Gaussian</td>
<td>0.86857</td>
<td>5.8749</td>
<td>784.1298</td>
<td>3.9147</td>
<td>3.07</td>
</tr>
<tr>
<td>Sparse represent.</td>
<td>0.87834</td>
<td>5.6377</td>
<td>750.3510</td>
<td>3.7629</td>
<td>259.44</td>
</tr>
<tr>
<td>HySure</td>
<td>0.86080</td>
<td>6.0224</td>
<td>778.1051</td>
<td>4.0454</td>
<td>177.60</td>
</tr>
</tbody>
</table>
Outline

Introduction

Multi-band optical image fusion
 Problem statement
 Fast fusion solving a Sylvester equation
 Experiments

Multi-band optical image change detection
 Fusion approach
 Problem statement
 Resolution pipeline
 Experiments
 Robust Fusion approach
 Problem statement
 Algorithm
 Experimental results

Conclusions
Multi-band optical image change detection

Change Detection (CD)

Input

- Two or more multitemporal images.
- Same geographical spot (scene).

Output

- Change map.

Source: RafaelRabellodeBarros
Multi-band optical image change detection

CD in remote sensing context

Applications:
- Land-use and land-cover analysis.
- Urban monitoring.
- Environmental surveillance.
- Defense and security.

Taxonomy of methods:
- According to supervision.
 - Supervised.
 - Unsupervised.
- According to modality.
 - Same modality.
 - Multimodality.
Supervised vs. Unsupervised

Supervised
- Require ground information.
- More appropriate to multimodal images.
- Higher complexity of methods.
- Good overall performance.
- Depend on training set.
- Less appealing for real applications.

Unsupervised
- Does not require any ground information.
- Generally applied to same modalities.
- Lower complexity of methods.
- Lower overall performance.
- Generally require preprocessing steps.
- Automatic behaviour.
Favorable scenario

- Same modality.
- Identical resolutions.

Comparison of homologous pixels!

Same modality CD!
Favorable scenario

Landsat 8 04/15/2015 (PAN - 15m)

Landsat 8 09/22/2015 (PAN - 15m)

- Same modality.
- Identical resolutions.

Comparison of homologous pixels!

Same modality CD!
Unfavorable scenario

Emergence situation:
- Natural disaster.
- Punctual missions.
- Defense and security.

Need:
- Multimodal CD.

Landsat 8 04/15/2015 (MS - 30m)
Landsat 8 09/22/2015 (PAN - 15m)
State-of-the-art

Principle:

- Identical resolutions obtained through independent and individual transformation over the considered images. [KCS+13]
- Multimodality CD achieved by supervised or semi-supervised methods [PCP+15].

Methods:

- Worst-case (WC): Degradation of both observed images.
- Degradation-Superresolution (DS): Spectral degradation followed by spatial Superresolution of LR-HS observed image.
- Superresolution-Degradation (SD): Spatial Superresolution followed by spectral degradation of LR-HS observed image.
- Coupled dictionary learning [GZSL16].

Problems:

- No joint processing.
- Loss of information (DS and SD).
- Loss of resolution (WC).
Adopted strategy: leveraging on fusion

General principle:
- Consider two images of same region acquired at same time (no change).
- Fused image evidences information contained in the pair of input images.
- Able to deal with different resolutions (e.g. pansharpening).

Today:
- Fusion-based approach [FDWC18]
- Robust-fusion based approach [FDWC17]

Remarks:
- Easier to manipulate optical images due to the noise statistics.
- 85% of the total earth observation satellites are optical [oCS17].
Multi-band optical image change detection

Fusion approach

Forward model for multi-band optical images

\[Y = LXR + N \]

where

- \(Y \) observed multiband image of low spatial and/or spectral resolutions (row \(\leftrightarrow \) band, column \(\leftrightarrow \) pixel)
- \(X \) (unknown) latent image of high spatial and/or spectral resolutions (row \(\leftrightarrow \) band, column \(\leftrightarrow \) pixel)
- \(L \) spectral degradation matrix
- \(R \) spatial degradation matrix, e.g., decomposed as \(R = BS \) with
 - \(B \) spatial blur
 - \(S \) spatial subsampling
Applicative scenarios

<table>
<thead>
<tr>
<th>Forward model #1</th>
<th>Forward model #2</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral degradation</td>
<td>Spatial degradation</td>
<td>Spectral degradation</td>
</tr>
<tr>
<td>S_1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S_2</td>
<td>L_1</td>
<td>—</td>
</tr>
<tr>
<td>S_3</td>
<td>—</td>
<td>R_1</td>
</tr>
<tr>
<td>S_4</td>
<td>—</td>
<td>R_1</td>
</tr>
<tr>
<td>S_5</td>
<td>L_1</td>
<td>R_1</td>
</tr>
<tr>
<td>S_6</td>
<td>—</td>
<td>R_1</td>
</tr>
<tr>
<td>S_7</td>
<td>L_1</td>
<td>R_1</td>
</tr>
<tr>
<td>S_8</td>
<td>L_1</td>
<td>—</td>
</tr>
<tr>
<td>S_9</td>
<td>L_1</td>
<td>R_1</td>
</tr>
<tr>
<td>S_{10}</td>
<td>L_1</td>
<td>R_1</td>
</tr>
</tbody>
</table>

Table: Overview of the spectral and spatial degradations w.r.t. experimental scenarios. The symbol — stands for “no degradation” [FDC20].
Applicative scenarios

<table>
<thead>
<tr>
<th>Forward model $#1$</th>
<th>Forward model $#2$</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral degradation</td>
<td>Spatial degradation</td>
<td>Spectral degradation</td>
</tr>
<tr>
<td>S_1</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>S_2</td>
<td>L_1</td>
<td>$-$</td>
</tr>
<tr>
<td>S_3</td>
<td>$-$</td>
<td>R_1</td>
</tr>
<tr>
<td>S_4</td>
<td>$-$</td>
<td>R_1</td>
</tr>
<tr>
<td>S_5</td>
<td>L_1</td>
<td>R_1</td>
</tr>
<tr>
<td>S_6</td>
<td>$-$</td>
<td>R_1</td>
</tr>
<tr>
<td>S_7</td>
<td>L_1</td>
<td>R_1</td>
</tr>
<tr>
<td>S_8</td>
<td>L_1</td>
<td>$-$</td>
</tr>
<tr>
<td>S_9</td>
<td>L_1</td>
<td>R_1</td>
</tr>
<tr>
<td>S_{10}</td>
<td>L_1</td>
<td>R_1</td>
</tr>
</tbody>
</table>

Table: Overview of the spectral and spatial degradations w.r.t. experimental scenarios. The symbol $-$ stands for “no degradation” [FDC20].
Multi-band optical image change detection

Fusion approach

Scenario S_4

Landsat 8 04/15/2015 (MS - 30m)

\[Y_{LR} = XR + N_{LR} \]

Landsat 8 09/22/2015 (PAN - 15m)

\[Y_{HR} = LX + N_{HR} \]

- Time ordering independent: $t_1 \neq t_2$.
Problem statement

Joint observation model

\[
\begin{align*}
Y_{LR} &= XR + N_{LR} \\
Y_{HR} &= LX + N_{HR}
\end{align*}
\]

Fusion process

\[
\hat{X} \leftarrow \text{FUSION} \left(Y_{LR}, Y_{HR} \right)
\]

“Predicted” pseudo-observed images

\[
\begin{align*}
\hat{Y}_{LR} &\triangleq \hat{X}R \\
\hat{Y}_{HR} &\triangleq L\hat{X}
\end{align*}
\]

Fusion properties [LdBD+ 15, WRM97]

- **Synthesis**: fused image \(\approx \) image obtained by the sensor of the target resolution.
- **Consistency**: reversibility of the fusion process.

Consistency-based CD hypothesis testing

\[
\begin{align*}
\mathcal{H}_0 : \left\{ \begin{array}{c}
Y_{LR} = \hat{Y}_{LR} \\
Y_{HR} = \hat{Y}_{HR}
\end{array} \right\} & \text{(no change)} \\
\mathcal{H}_1 : \left\{ \begin{array}{c}
Y_{LR} \neq \hat{Y}_{LR} \\
Y_{HR} \neq \hat{Y}_{HR}
\end{array} \right\} & \text{(change)}
\end{align*}
\]
Multi-band optical image change detection

Fusion approach

Problem statement

Joint observation model

\[
\begin{align*}
Y_{LR} &= X_R + N_{LR} \\
Y_{HR} &= L_X + N_{HR}
\end{align*}
\]

Fusion process

\[\hat{X} \leftarrow \text{FUSION}(Y_{LR}, Y_{HR})\]

“Predicted” pseudo-observed images

\[
\begin{align*}
\hat{Y}_{LR} &\triangleq \hat{X}_R \\
\hat{Y}_{HR} &\triangleq L\hat{X}
\end{align*}
\]

Fusion properties [LdB+15, WRM97]

- Synthesis: fused image \(\approx\) image obtained by the sensor of the target resolution.
- Consistency: reversibility of the fusion process.

Consistency-based CD hypothesis testing

\[
\begin{align*}
H_0 : \quad &\begin{cases}
Y_{LR} = \hat{Y}_{LR} \\
Y_{HR} = \hat{Y}_{HR}
\end{cases} & \text{(no change)} \\
H_1 : \quad &\begin{cases}
Y_{LR} \neq \hat{Y}_{LR} \\
Y_{HR} \neq \hat{Y}_{HR}
\end{cases} & \text{(change)}
\end{align*}
\]
Problem statement

Joint observation model

\[Y_{LR} = X_R + N_{LR} \]
\[Y_{HR} = L_X + N_{HR} \]

Fusion process

\[\hat{X} \leftarrow \text{FUSION} (Y_{LR}, Y_{HR}) \]

“Predicted” pseudo-observed images

\[\hat{Y}_{LR} \triangleq \hat{X}_R \]
\[\hat{Y}_{HR} \triangleq \hat{L}_X \]

Fusion properties [LdBD+ 15, WRM97]

- Synthesis: fused image \(\approx \) image obtained by the sensor of the target resolution.
- Consistency: reversibility of the fusion process.

Consistency-based CD hypothesis testing

\[H_0 : \left\{ \begin{array}{c}
Y_{LR} = \hat{Y}_{LR} \\
Y_{HR} = \hat{Y}_{HR}
\end{array} \right. \quad \text{(no change)} \]

\[H_1 : \left\{ \begin{array}{c}
Y_{LR} \neq \hat{Y}_{LR} \\
Y_{HR} \neq \hat{Y}_{HR}
\end{array} \right. \quad \text{(change)} \]
Problem statement

Joint observation model

\[
Y_{LR} = XR + N_{LR} \\
Y_{HR} = LX + N_{HR}
\]

Fusion process

\[\hat{X} \leftrightarrow \text{FUSION} (Y_{LR}, Y_{HR})\]

“Predicted” pseudo-observed images

\[
\hat{Y}_{LR} \triangleq \hat{X}R \\
\hat{Y}_{HR} \triangleq L\hat{X}
\]

Fusion properties [LdB\(^{+}\) 15, WRM97]

- **Synthesis**: fused image \(\approx\) image obtained by the sensor of the target resolution.
- **Consistency**: reversibility of the fusion process.

Consistency-based CD hypothesis testing

\[\mathcal{H}_0 : \left\{ \begin{array}{l}
Y_{LR} = \hat{Y}_{LR} \\
Y_{HR} = \hat{Y}_{HR}
\end{array} \right\} \text{ (no change)}\]

\[\mathcal{H}_1 : \left\{ \begin{array}{l}
Y_{LR} \neq \hat{Y}_{LR} \\
Y_{HR} \neq \hat{Y}_{HR}
\end{array} \right\} \text{ (change)}\]
Multi-band optical image change detection

3-steps procedure [FDWC18]

1. **fusion**: estimating \hat{X} from Y_{LR} and Y_{HR}
 - Tailored by the end user [FYDC18]
 - e.g., Fast fusion based on solving a SE

2. **prediction**: reconstructing \hat{Y}_{LR} and \hat{Y}_{HR} from \hat{X}
 $$
 \hat{Y}_{LR} = \hat{X}R
 $$
 $$
 \hat{Y}_{HR} = L\hat{X}.
 $$

3. **decision**: deriving change maps D_{LR} and D_{HR} from, resp.,
 $$
 \gamma_{LR} = \{Y_{LR}, \hat{Y}_{LR}\},
 $$
 $$
 \gamma_{HR} = \{Y_{HR}, \hat{Y}_{HR}\}.
 $$
 - Tailored by the end user.
 - e.g., Change Vector Analysis (CVA) [BB07]
Experiments on synthetic images
Detection performance

(a) Situation 1: HR-MS/LR-HS
(b) Situation 2: HR-PAN/LR-HS
(c) Situation 3: HR-PAN/LR-MS

Table: Situations 1, 2 & 3: quantitative detection performance (AUC and distance).

<table>
<thead>
<tr>
<th></th>
<th>D_{HR}</th>
<th>D_{LR}</th>
<th>D_{aLR}</th>
<th>D_{WC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situation 1</td>
<td>AUC 0.981039</td>
<td>Dist. 0.951995</td>
<td>0.867478 0.789379</td>
<td>0.992242 0.979298</td>
</tr>
<tr>
<td>Situation 2</td>
<td>AUC 0.931047</td>
<td>Dist. 0.883488</td>
<td>0.819679 0.737274</td>
<td>0.977362 0.952995</td>
</tr>
<tr>
<td>Situation 3</td>
<td>AUC 0.94522</td>
<td>Dist. 0.915992</td>
<td>0.711167 0.647865</td>
<td>0.984833 0.972997</td>
</tr>
</tbody>
</table>
Experiments on real images
Data description

Observed image at t_1 (04/15/2015):
- Local: Lake-Tahoe (CA) USA.
- Sensor: Landsat 8.
- Image size: 175 \times 180 pixels.
- Spatial resolution: 30m per pixel.
- Spectral resolution: 3 spectral bands (MS) in RBG visible spectrum.

Preprocessing:
- Manual alignment.

Observed image at t_2 (09/22/2015):
- Local: Lake-Tahoe (CA) USA.
- Sensor: Landsat 8.
- Image size: 350 \times 360 pixels.
- Spatial resolution: 15m per pixel.
- Spectral resolution: PAN in RBG visible spectrum.

Compared Methods:
- Fusion approach ($\hat{D}_{HR}, \hat{D}_{aLR}$).
- Worst-case approach (\hat{D}_{WC}).
Real scenario (LR-MS and HR-PAN): (a) LR-MS observed image Y_{LR}, (b) HR-PAN observed image Y_{HR}, (c) change mask \mathbf{D}_{HR}, (d) change mask \mathbf{D}_{aLR}, (e) change mask \mathbf{D}_{WC} estimated by the worst-case approach. From (f) to (j): zoomed versions of the regions delineated in red in (a)–(e).
Problem statement

Joint observation model: from fusion...

\[
Y_{LR} = X_R + N_{LR} \\
Y_{HR} = LX + N_{HR}
\]

with

- \(X_1\): latent image at \(t_1\)
- \(X_2\): latent image at \(t_2\)

or, equivalently, \(X_2 = X_1 + \Delta X\) with

- \(\Delta X\): change image

\[
\Delta X = [\Delta x_1, \ldots, \Delta x_n] \quad \text{and} \quad \Delta x_i = [\Delta x_{1,i}, \ldots, \Delta x_{m,i}]^T
\]

CD hypothesis testing

Decision rule for the \(i\)th pixel \((i = 1, \ldots, n)\)

\[
\mathcal{H}_0 : \|\Delta x_i\|_2 < \tau \quad \text{(no change)}
\]

\[
\mathcal{H}_1 : \|\Delta x_i\|_2 \geq \tau \quad \text{(change)}
\]
Problem statement

Joint observation model: from fusion... to robust fusion

\[Y_{LR} = X_1 R + N_{LR} \]
\[Y_{HR} = LX_2 + N_{HR} \]

with

- \(X_1 \): latent image at \(t_1 \)
- \(X_2 \): latent image at \(t_2 \)

or, equivalently, \(X_2 = X_1 + \Delta X \) with

- \(\Delta X \): change image

\[\Delta X = [\Delta x_1, \ldots, \Delta x_n] \text{ and } \Delta x_i = [\Delta x_{1,i}, \ldots, \Delta x_{m,i}]^T \]

CD hypothesis testing

Decision rule for the \(i \)th pixel \((i = 1, \ldots, n) \)

\[H_0 : \|\Delta x_i\|_2 < \tau \quad (\text{no change}) \]
\[H_1 : \|\Delta x_i\|_2 \geq \tau \quad (\text{change}) \]
Problem statement

Joint observation model: from fusion... to robust fusion

\[
Y_{LR} = X_1 R + N_{LR} \\
Y_{HR} = L X_2 + N_{HR}
\]

with
- \(X_1\): latent image at \(t_1\)
- \(X_2\): latent image at \(t_2\)

or, equivalently, \(X_2 = X_1 + \Delta X\) with
- \(\Delta X\): change image

\[
\Delta X = [\Delta x_1, \ldots, \Delta x_n] \quad \text{and} \quad \Delta x_i = \left[\Delta x_{1,i}, \ldots, \Delta x_{m,i}\right]^T
\]

CD hypothesis testing

Decision rule for the \(i\)th pixel (\(i = 1, \ldots, n\))

\[
\mathcal{H}_0 : \|\Delta x_i\|_2 < \tau \quad \text{(no change)}
\]

\[
\mathcal{H}_1 : \|\Delta x_i\|_2 \geq \tau \quad \text{(change)}
\]
Problem statement

Joint observation model: from fusion... to robust fusion

\[
\begin{align*}
Y_{LR} &= X_1 R + N_{LR} \\
Y_{HR} &= L X_2 + N_{HR}
\end{align*}
\]

with
- \(X_1\): latent image at \(t_1\)
- \(X_2\): latent image at \(t_2\)

or, equivalently, \(X_2 = X_1 + \Delta X\) with
- \(\Delta X\): change image

\[
\Delta X = [\Delta x_1, \ldots, \Delta x_n] \quad \text{and} \quad \Delta x_i = \begin{bmatrix} \Delta x_{1,i}, \ldots, \Delta x_{m,i} \end{bmatrix}^T
\]

CD hypothesis testing

Decision rule for the \(i\)th pixel \((i = 1, \ldots, n)\)

\[
\begin{align*}
\mathcal{H}_0 : \|\Delta x_i\|_2 < \tau \quad &\text{(no change)} \\
\mathcal{H}_1 : \|\Delta x_i\|_2 \geq \tau \quad &\text{(change)}
\end{align*}
\]
Multi-band optical image change detection
Robust Fusion approach

Optimization problem

Likelihood of the observations

\[
\begin{align*}
Y_{LR \mid X_1} & \sim \mathcal{M}\mathcal{N}_{\lambda_1 \cdot m_1}(X_1 R, \Lambda_{LR}, I_{m_1}) \\
Y_{HR \mid X_2} & \sim \mathcal{M}\mathcal{N}_{\lambda_2 \cdot n}(L X_2, \Lambda_{HR}, I_{n})
\end{align*}
\]

Maximum a posteriori (MAP) estimator

\[
\left\{ \hat{X}_{1,\text{MAP}}, \Delta \hat{X}_{\text{MAP}} \right\} \in \arg \min_{X_1, \Delta X} \left[\Lambda_{LR}^{-\frac{1}{2}} \right] \left(Y_{LR} - X_1 R \right) \left\| F \right. \\
+ \left\| \Lambda_{HR}^{-\frac{1}{2}} \left(Y_{HR} - L (X_1 + \Delta X) \right) \right\| F_2 \\
+ \mu \phi_1 (X_1) + \gamma \phi_2 (\Delta X)
\]

Key ingredient: ϕ_2

Spatial sparsity of the changes through a group-lasso regularization

\[
\phi_2 (\Delta X) = \| \Delta X \|_{2,1} = \sum_{i=1}^{n} \| \Delta x_i \|_2 = \| e \|_1
\]

promoting a sparse change image energy vector $e = [\| \Delta x_1 \|_2, \ldots, \| \Delta x_n \|_2]$.

Nicolas Dobigeon
ORASIS 2021, Lac de St-Ferréol
Optimization problem

Likelihood of the observations

\[Y_{LR} | X_1 \sim \mathcal{M}\mathcal{N}_{n, \lambda_1} (X_1 R, \Lambda_{LR}, I_m) \]
\[Y_{HR} | X_2 \sim \mathcal{M}\mathcal{N}_{m, \lambda_2} (LX_2, \Lambda_{HR}, I_n) \]

Maximum a posteriori (MAP) estimator

\[
\left\{ \hat{X}_{1, MAP}, \Delta \hat{X}_{MAP} \right\} \in \arg \min_{X_1, \Delta X} \left\| \Lambda_{LR}^{-\frac{1}{2}} (Y_{LR} - X_1 R) \right\|_F^2 \\
+ \left\| \Lambda_{HR}^{-\frac{1}{2}} (Y_{HR} - L (X_1 + \Delta X)) \right\|_F^2 \\
+ \phi_1 (X_1) + \gamma \phi_2 (\Delta X)
\]

Key ingredient: \(\phi_2 \)

Spatial sparsity of the changes through a group-lasso regularization

\[
\phi_2 (\Delta X) = \| \Delta X \|_{2,1}
\]
\[
= \sum_{i=1}^{n} \| \Delta x_i \|_2 = \| e \|_1
\]

promoting a sparse change image energy vector \(e = \left[\| \Delta x_1 \|_2, \ldots, \| \Delta x_n \|_2 \right] \).
Solution

Robust fusion: alternate minimization algorithm [FDWC17, FDC20]

| Data: Y_{HR}, Y_{LR}, L, R
| Input: ΔX^0
| for $k = 1, \ldots, K$ do
| // Fusion step
| $X_1^{(k+1)} = \arg \min_{X_1} \mathcal{J}(X_1, \Delta X^{(k)})$
| // Correction step
| $\Delta X^{(k+1)} = \arg \min_{\Delta X} \mathcal{J}(X_1^{(k+1)}, \Delta X)$
| end
| $\hat{X}_{1,\text{MAP}} \triangleq X_1^{(K+1)}$ and $\Delta \hat{X}_{\text{MAP}} \triangleq \Delta \hat{X}^{(K+1)}$

Output: $\hat{X}_{1,\text{MAP}}, \Delta \hat{X}_{\text{MAP}}$

Characteristics

- Iterative minimization,
- Problem split into 2 simple sub-problems,
- Convergence guarantee.
Multi-band optical image change detection

Robust Fusion approach

Optimization w.r.t. \(X_1 \)

(fixing \(\Delta X = \Delta X^{(k)} \))

\[
\min_{X_1, \Delta X} \left\| \Lambda_{LR}^{-\frac{1}{2}} (Y_{LR} - X_1 R) \right\|^2_F + \left\| \Lambda_{HR}^{-\frac{1}{2}} (Y_{HR} - L (X_1 + \Delta X)) \right\|^2_F + \mu \| X_1 \|^2_F + \gamma \| \Delta X \|_{2,1}
\]

Optimization problem

\[
X_1^{(k+1)} = \arg \min_{X_1} \left\| \Lambda_{LR}^{-\frac{1}{2}} (Y_{LR} - X_1 R) \right\|^2_F + \left\| \Lambda_{HR}^{-\frac{1}{2}} (Y_{HR} - L (X_1 + \Delta X^{(k)})) \right\|^2_F + \mu \| X_1 \|^2_F
\]

rewritten as

\[
X_1^{(k+1)} = \arg \min_{X_1} \left\| \Lambda_{LR}^{-\frac{1}{2}} (Y_{LR} - X_1 R) \right\|^2_F + \left\| \Lambda_{HR}^{-\frac{1}{2}} (\tilde{Y}_{HR}^{(k)} - L X_1) \right\|^2_F + \mu \| X_1 \|^2_F
\]

with

- \(\tilde{Y}_{HR}^{(k)} = Y_{HR} - L \Delta X^{(k)} \): pseudo-observed image at \(t_1 \).
- Equivalent to an **image fusion** problem (single latent image estimation \(X_1 \)).
- Two quadratic data-fitting terms + Thikonov regularization
 - \(\to \) fast and explicit solution based on solving a **Sylvester equation**.
Multi-band optical image change detection

Robust Fusion approach

Optimization w.r.t. X_1

(fixing $\Delta X = \Delta X^{(k)}$)

$$\min_{X_1, \Delta X} \left\| \Lambda_{LR}^{-\frac{1}{2}} (Y_{LR} - X_1 R) \right\|_F^2 + \left\| \Lambda_{HR}^{-\frac{1}{2}} (Y_{HR} - L (X_1 + \Delta X)) \right\|_F^2 + \mu \| X_1 \|_F^2 + \gamma \| \Delta X \|_{2,1}$$

Optimization problem

$$X_1^{(k+1)} = \arg \min_{X_1} \left\| \Lambda_{LR}^{-\frac{1}{2}} (Y_{LR} - X_1 R) \right\|_F^2 + \left\| \Lambda_{HR}^{-\frac{1}{2}} (Y_{HR} - L (X_1 + \Delta X^{(k)})) \right\|_F^2 + \mu \| X_1 \|_F^2$$

rewritten as

$$X_1^{(k+1)} = \arg \min_{X_1} \left\| \Lambda_{LR}^{-\frac{1}{2}} (Y_{LR} - X_1 R) \right\|_F^2 + \left\| \Lambda_{HR}^{-\frac{1}{2}} (\bar{Y}_{HR}^{(k)} - LX_1) \right\|_F^2 + \mu \| X_1 \|_F^2$$

with

- $\bar{Y}_{HR}^{(k)} = Y_{HR} - L \Delta X^{(k)}$: pseudo-observed image at t_1.
- Equivalent to an image fusion problem (single latent image estimation X_1).
- Two quadratic data-fitting terms + Thikonov regularization
 \rightarrow fast and explicit solution based on solving a Sylvester equation.
Optimization w.r.t. \(X_1 \)

\[
\min_{X_1, \Delta X} \left\| \Lambda_{LR}^{-\frac{1}{2}} (Y_{LR} - X_1 R) \right\|_F^2 + \left\| \Lambda_{HR}^{-\frac{1}{2}} (Y_{HR} - L (X_1 + \Delta X)) \right\|_F^2 + \mu \|X_1\|_F^2 + \gamma \|\Delta X\|_{2,1}
\]

Optimization problem

\[
X_{1}^{(k+1)} = \arg\min_{X_1} \left\| \Lambda_{LR}^{-\frac{1}{2}} (Y_{LR} - X_1 R) \right\|_F^2 + \left\| \Lambda_{HR}^{-\frac{1}{2}} (Y_{HR} - L (X_1 + \Delta X^{(k)})) \right\|_F^2 + \mu \|X_1\|_F^2
\]

rewritten as

\[
X_{1}^{(k+1)} = \arg\min_{X_1} \left\| \Lambda_{LR}^{-\frac{1}{2}} (Y_{LR} - X_1 R) \right\|_F^2 + \left\| \Lambda_{HR}^{-\frac{1}{2}} (\widetilde{Y}_HR^{(k)} - LX_1) \right\|_F^2 + \mu \|X_1\|_F^2
\]

with

- \(\widetilde{Y}_HR^{(k)} = Y_{HR} - L\Delta X^{(k)} \): pseudo-observed image at \(t_1 \).
- Equivalent to an image fusion problem (single latent image estimation \(X_1 \)).
- Two quadratic data-fitting terms + Thikonov regularization
 \(\rightarrow \) fast and explicit solution based on solving a Sylvester equation.
Multi-band optical image change detection

Robust Fusion approach

Optimization w.r.t. ΔX

(fixing $X_1 = X_1^{(k)}$)

\[
\min_{X_1, \Delta X} \left\| \Lambda_{LR}^{-\frac{1}{2}} (Y_{LR} - X_1 R) \right\|_F^2 + \left\| \Lambda_{HR}^{-\frac{1}{2}} (Y_{HR} - L (X_1 + \Delta X)) \right\|_F^2 + \mu \|X_1\|_F^2 + \gamma \|\Delta X\|_{2,1}
\]

Optimization problem

\[
\Delta X^{(k+1)} = \arg \min_{\Delta X} \left\| \Lambda_{HR}^{-\frac{1}{2}} (\Delta Y_{HR} - L (X_1^k + \Delta X)) \right\|_F^2 + \gamma \|\Delta X\|_{2,1}
\]

rewritten as

\[
\Delta X^{(k+1)} = \arg \min_{\Delta X} \left\| \Lambda_{HR}^{-\frac{1}{2}} (\Delta \tilde{Y}_{HR}^k - L \Delta X) \right\|_F^2 + \gamma \|\Delta X\|_{2,1}
\]

with

- $\Delta \tilde{Y}_{HR}^k = Y_{HR} - LX_1^k$: predicted change image at t_2.
- Equivalent to a spectral deblurring problem.
- Convex data-fitting term and regularization, non-smooth regularization
 → solution using proximal algorithms (i.e. forward-backward).
Multi-band optical image change detection

Robust Fusion approach

Optimization w.r.t. ΔX

(fixing $X_1 = X_1^{(k)}$)

$$\min_{X_1, \Delta X} \left\| A_{LR}^{-\frac{1}{2}} (Y_{LR} - X_1 R) \right\|_F^2 + \left\| A_{HR}^{-\frac{1}{2}} (Y_{HR} - L (X_1 + \Delta X)) \right\|_F^2 + \mu \left\| X_1 \right\|_F^2 + \gamma \left\| \Delta X \right\|_{2,1}$$

Optimization problem

$$\Delta X^{(k+1)} = \arg \min_{\Delta X} \left\| A_{HR}^{-\frac{1}{2}} (\Delta Y_{HR} - L (X_1^k + \Delta X)) \right\|_F^2 + \gamma \left\| \Delta X \right\|_{2,1}$$

rewritten as

$$\Delta X^{(k+1)} = \arg \min_{\Delta X} \left\| A_{HR}^{-\frac{1}{2}} (\Delta \tilde{Y}_{HR}^k - L \Delta X) \right\|_F^2 + \gamma \left\| \Delta X \right\|_{2,1}$$

with

- $\Delta \tilde{Y}_{HR}^k = Y_{HR} - L X_1^k$: predicted change image at t_2.
- Equivalent to a spectral deblurring problem.
- Convex data-fitting term and regularization, non-smooth regularization
 → solution using proximal algorithms (i.e. forward-backward).
Optimization w.r.t. ΔX

(fixing $X_1 = X_1^{(k)}$)

$$
\min_{X_1, \Delta X} \left\| \Lambda_{\text{LR}}^{-\frac{1}{2}} (Y_{\text{LR}} - X_1 R) \right\|_F^2 + \left\| \Lambda_{\text{HR}}^{-\frac{1}{2}} (Y_{\text{HR}} - L (X_1 + \Delta X)) \right\|_F^2 + \mu \left\| X_1 \right\|_F^2 + \gamma \left\| \Delta X \right\|_{2,1}
$$

Optimization problem

$$
\Delta X^{(k+1)} = \arg \min_{\Delta X} \left\| \Lambda_{\text{HR}}^{-\frac{1}{2}} \left(\Delta Y_{\text{HR}} - L (X_1^k + \Delta X) \right) \right\|_F^2 + \gamma \left\| \Delta X \right\|_{2,1}
$$

rewritten as

$$
\Delta X^{(k+1)} = \arg \min_{\Delta X} \left\| \Lambda_{\text{HR}}^{-\frac{1}{2}} \left(\Delta \tilde{Y}_{\text{HR}}^k - L \Delta X \right) \right\|_F^2 + \gamma \left\| \Delta X \right\|_{2,1}
$$

with

- $\Delta \tilde{Y}_{\text{HR}}^k = Y_{\text{HR}} - L X_1^k$: predicted change image at t_2.
- Equivalent to a spectral deblurring problem.
- Convex data-fitting term and regularization, non-smooth regularization
 → solution using proximal algorithms (i.e. forward-backward).
Experiments on synthetic images
Detection performance

- Situation 1: HR-MS/LR-HS
- Situation 2: HR-PAN/LR-HS
- Situation 3: HR-PAN/LR-MS

Table: Situations 1, 2 & 3: quantitative detection performance (AUC and distance).

<table>
<thead>
<tr>
<th></th>
<th>\hat{D}_{RF}</th>
<th>\hat{D}_F</th>
<th>\hat{D}_{WC}</th>
<th>\hat{D}_{DS}</th>
<th>\hat{D}_{SD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situation 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td>0.997469</td>
<td>0.981039</td>
<td>0.941408</td>
<td>0.843685</td>
<td>0.847518</td>
</tr>
<tr>
<td>Dist.</td>
<td>0.990299</td>
<td>0.951995</td>
<td>0.887789</td>
<td>0.766677</td>
<td>0.771277</td>
</tr>
<tr>
<td>Situation 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td>0.997418</td>
<td>0.931047</td>
<td>0.89517</td>
<td>0.790859</td>
<td>0.785019</td>
</tr>
<tr>
<td>Dist.</td>
<td>0.990299</td>
<td>0.883488</td>
<td>0.833783</td>
<td>0.718072</td>
<td>0.712771</td>
</tr>
<tr>
<td>Situation 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td>0.994929</td>
<td>0.94522</td>
<td>0.911311</td>
<td>0.786255</td>
<td>0.779522</td>
</tr>
<tr>
<td>Dist.</td>
<td>0.991699</td>
<td>0.915992</td>
<td>0.864686</td>
<td>0.713471</td>
<td>0.706871</td>
</tr>
</tbody>
</table>
Experiments on real images
Data description

Observed image at t_1 (04/15/2015):
- Local: Lake-Tahoe (CA) USA.
- Sensor: Landsat 8.
- Image size: 175×180 pixels.
- Spatial resolution: 30m per pixel.
- Spectral resolution: 3 spectral bands (MS) in RBG visible spectrum.

Preprocessing:
- Manual alignment.

Observed image at t_2 (09/22/2015):
- Local: Lake-Tahoe (CA) USA.
- Sensor: Landsat 8.
- Image size: 350×360 pixels.
- Spatial resolution: 15m per pixel.
- Spectral resolution: PAN in RBG visible spectrum.

Compared Methods:
- Robust Fusion approach (\hat{D}_{RF}).
- Fusion approach (\hat{D}_F).
- Worst-case approach (\hat{D}_{WC}).
Multi-band optical image change detection

Robust Fusion approach

Experiments on real images

Visual results

Scenario S_4: (a) LR-MS observed image Y_{LR}, (b) HR-PAN observed image Y_{HR}, (e) change mask \hat{D}_{WC} estimated by the WC approach, (d) change mask \hat{D}_F estimated by the fusion approach and (c) change mask \hat{D}_{RF} estimated by the proposed approach. From (f) to (h): zoomed versions of the regions delineated in red in (a)–(c).
Conclusions

Outline

Introduction

Multi-band optical image fusion
 Problem statement
 Fast fusion solving a Sylvester equation
 Experiments

Multi-band optical image change detection
 Fusion approach
 Robust Fusion approach

Conclusions
Conclusions

Fusion

- fusion of multi-band images formulated as a linear inverse problem
- spectral regularization: constraining the estimation in a lower-dimensional space
- spatial regularizations:
 - Gaussian prior
 - dictionary-based sparse prior
 - ...
- explicit solution under generalized Thinonov regularizations, which can be embedded into iterative algorithms
 - for more complex priors
 - when estimating jointly other parameters (noise variance, spectral response,...)

- assumes spectrally-invariant spatial blurs... not valid for astrophysical data
 → see [GOBD20] and [GOB^+ 20]

- fusion as a convenient framework to address change detection problems
Fusion

- fusion of multi-band images formulated as a **linear inverse problem**
- spectral regularization: constraining the estimation in a lower-dimensional space
- spatial regularizations:
 - Gaussian prior
 - dictionary-based sparse prior
 - ...
- explicit solution under generalized Thinonov regularizations, which can be embedded into iterative algorithms
 - for more complex priors
 - when estimating jointly other parameters (noise variance, spectral response,...)
- assumes spectrally-invariant spatial blurs... not valid for astrophysical data
 → see [GOBD20] and [GOB^+ 20]
- fusion as a convenient framework to address change detection problems
Fusion

- fusion of multi-band images formulated as a \textit{linear inverse problem}
- spectral regularization: constraining the estimation in a lower-dimensional space
- spatial regularizations:
 - Gaussian prior
 - dictionary-based sparse prior
 - ...
- explicit solution under generalized Thinonov regularizations, which can be embedded into iterative algorithms
 - for more complex priors
 - when estimating jointly other parameters (noise variance, spectral response,...)

- assumes spectrally-invariant spatial blurs... not valid for astrophysical data
 \rightarrow \text{see [GOBD20] and [GOB}^+20]

- fusion as a convenient framework to address change detection problems
Conclusions

Change detection

Fusion approach
- unsupervised CD between optical images of different spatial/spectral resolutions
- assumes prior knowledge on the forward model (degradations)
- steps tailored by the end-user
- provides 2 CD maps of different resolutions

Robust fusion approach
- unsupervised CD between optical images of different spatial/spectral resolutions
- assumes prior knowledge on the forward model (degradations)
- estimates high resolution latent images and CD images
- provides 1 CD map of high spatial and spectral resolutions

For images of different modalities (e.g., optical and SAR)
- no forward model available
- no physically interpretable latent space
- latent space identified by data-driven methods, e.g., dictionary learning [FDC+19]
Conclusions

Change detection

Fusion approach
- unsupervised CD between optical images of different spatial/spectral resolutions
- assumes prior knowledge on the forward model (degradations)
- steps tailored by the end-user
- provides 2 CD maps of different resolutions

Robust fusion approach
- unsupervised CD between optical images of different spatial/spectral resolutions
- assumes prior knowledge on the forward model (degradations)
- estimates high resolution latent images and CD images
- provides 1 CD map of high spatial and spectral resolutions

For images of different modalities (e.g., optical and SAR)
- no forward model available
- no physically interpretable latent space
- latent space identified by data-driven methods, e.g., dictionary learning [FDC+19]
References I

Francesca Bovolo and Lorenzo Bruzzone.
A Theoretical Framework for Unsupervised Change Detection Based on Change Vector Analysis in the Polar Domain.

V. Ferraris, N. Dobigeon, Y. Cruz Cavalcanti, Th. Oberlin, and M. Chabert.
Coupled dictionary learning for unsupervised change detection between multimodal remote sensing images.

V. Ferraris, N. Dobigeon, and M. Chabert.
Robust fusion algorithms for unsupervised change detection between multi-band optical images – A comprehensive case study.

V. Ferraris, N. Dobigeon, Q. Wei, and M. Chabert.
Robust fusion of multi-band images with different spatial and spectral resolutions for change detection.

V. Ferraris, N. Dobigeon, Q. Wei, and M. Chabert.
Detecting changes between optical images of different spatial and spectral resolutions: a fusion-based approach.
References II

V. Ferraris, N. Yokoya, N. Dobigeon, and M. Chabert.
A comparative study of fusion-based change detection methods for multi-band images with different spectral and spatial resolutions.

C. Guilloteau, Th. Oberlin, O. Berné, É. Habart, and N. Dobigeon.
Simulated JWST datasets for multispectral and hyperspectral image fusion.

C. Guilloteau, Th. Oberlin, O. Berné, and N. Dobigeon.
Hyperspectral and multispectral image fusion under spectrally varying spatial blurs – application to high dimensional infrared astronomical imaging.

Maoguo Gong, Puzhao Zhang, Linzhi Su, and Jia Liu.
Coupled Dictionary Learning for Change Detection From Multisource Data.

References III

Hyperspectral pansharpening: a review.

Laetitia Loncan, Luis B. de Almeida, Jose M. Bioucas-Dias, Xavier Briottet, Jocelyn Chanussot, Nicolas Dobigeon, Sophie Fabre, Wenzhi Liao, Giorgio A. Licciardi, Miguel Simoes, Jean-Yves Tourneret, Miguel Angel Veganzones, Gemine Vivone, Qi Wei, and Naoto Yokoya.
Hyperspectral Pansharpening: A Review.

Union of Concerned Scientists.
Union of concerned scientists satellite database.

Jorge Prendes, Marie Chabert, Frédéric Pascal, Alain Giros, and Jean-Yves Tourneret.
Change detection for optical and radar images using a Bayesian nonparametric model coupled with a Markov random field.

M. Simões, J. Bioucas Dias, L. Almeida, and J. Chanussot.
A convex formulation for hyperspectral image superresolution via subspace-based regularization.
Q. Wei, J. M. Bioucas Dias, N. Dobigeon, and J.-Y. Tourneret.
Hyperspectral and multispectral image fusion based on a sparse representation.

Q. Wei, N. Dobigeon, and J.-Y. Tourneret.
Fast fusion of multi-band images based on solving a Sylvester equation.

Qi Wei, Nicolas Dobigeon, and Jean-Yves Tourneret.
Bayesian fusion of multi-band images.

Qi Wei, Nicolas Dobigeon, and Jean-Yves Tourneret.
Bayesian fusion of multispectral and hyperspectral images using a block coordinate descent method.

R-FUSE: Robust fast fusion of multi-band images based on solving a Sylvester equation.

Lucien Wald, Thierry Ranchin, and Marc Mangolini.
Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images.
N. Zhao, Q. Wei, A. Basarab, N. Dobigeon, D. Kouamé, and J.-Y. Tourneret.

Fast single image super-resolution using a new analytical solution for $\ell_2 - \ell_2$ problems.

Multi-band optical imaging
From fusion to change detection

Nicolas Dobigeon
Joint work with Q. Wei, V. Ferraris, J.-Y. Tourneret and M. Chabert

University of Toulouse, IRIT/INP-ENSEEIHT
Institut Universitaire de France (IUF)
Artificial and Natural Intelligence Toulouse Institute (ANITI)
http://dobigeon.perso.enseeiht.fr

ORASIS 2021, Lac de St-Ferréol